Übungsblatt 3

Aufgabe 1

a) Geben Sie für z = 3 + 4i, w = 1 - 2i, v = i die folgenden Werte in kartesischer Form an und skizzieren Sie alle Zahlen und Ergebnisse in der komplexen Ebene:

$$z+w, \quad z-w, \quad \overline{z}, \quad \overline{w}, \quad z\cdot w, \quad \frac{z}{w}, \quad v^3, \quad v^{-5}, \quad (-v)^6, \quad v^n \text{ für } n \in \mathbb{Z}$$

b) Berechnen Sie für allgemeine $a \in \mathbb{R}$ den Realteil und Imaginärteil der komplexen Zahl

$$z = \frac{(3-2i)(2+ai)}{(a+5i)\cdot i^7}$$

Aufgabe 2 Bestimmen Sie \overline{z} , |z| und z^{-1} für $z = \frac{\sqrt{5}}{10}(1+i)(2-i)$.

Bestimmen Sie alle komplexen Lösungen der nachstehenden Gleichungen und skizzieren Sie diese in der Gaußschen Ebene:

a)
$$\frac{z}{i-1} - \frac{3i-6}{3i+1} = \frac{6i-3}{2+i}$$

c)
$$|z - 1 - i| = \sqrt{2}$$
.

b)
$$z^2 = 1 + i\sqrt{3}$$

d)
$$|iz - i - 1| = 1$$

Stellen Sie folgende komplexe Zahlen in kartesischer Form und Polarform dar:

a)
$$z = \frac{\sqrt{3} - i}{3i + \text{conj}((1 - i)^2)}$$

$$c) z = \prod_{k=1}^{3} \left(\frac{1}{k} + i\right)$$

b)
$$z = \prod_{k=1}^{3} (k+i)$$

d)
$$z = \sum_{k=0}^{42} i^k$$

Aufgabe 5

a) Geben Sie den Real- und Imaginärteil der folgenden komplexen Zahlen an:

i)
$$\exp\left(i\frac{\pi}{4}\right)$$

ii)
$$\left(\exp\left(i\frac{\pi}{c}\right)\right)^{12}$$

i)
$$\exp\left(i\frac{\pi}{4}\right)$$
 ii) $\left(\exp\left(i\frac{\pi}{6}\right)\right)^{12}$ iii) $\sqrt{3}\exp\left(i\frac{\pi}{3}\right)$

b) Geben Sie die Exponentialform für die folgenden komplexen Zahlen an:

i)
$$i^3$$
 ii) $\frac{\sqrt{3}}{2} - \frac{i}{2}$ iii) $-(6+3\sqrt{3}) + 3i$

Aufgabe 6 Wie lauten folgende komplexe Zahlen in kartesischer Form?

i)
$$(1-i)^{42}$$
 ii) $\frac{\left(\sqrt{3}+i\right)^{24}}{(1+i)^{42}}$ iii) $\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)^n$ für ein $n\in\mathbb{N}_0$

Aufgabe 7 Geben Sie alle A > 0 und $\varphi \in \mathbb{R}$ an, sodass folgende Gleichung erfüllt ist:

$$(\sqrt{3} - i) \cdot e^{i\varphi} = A \cdot e^{i\frac{\pi}{6}}$$

Aufgabe 8 Zeigen Sie mit Hilfe der Formel von Moivre, dass für jedes $\varphi \in \mathbb{R}$ gilt:

$$\cos(3\varphi) = \cos^3(\varphi) - 3\cos(\varphi)\sin^2(\varphi)$$

$$\sin(3\varphi) = 3\sin(\varphi)\cos^2(\varphi) - \sin^3(\varphi)$$

Aufgabe 9 Geben Sie alle komplexen Nullstellen der folgenden Polynome $p: \mathbb{C} \to \mathbb{C}$ an:

a)
$$p(z) = z^3 - 8i$$

c)
$$p(z) = z^4 + z^2 + 1$$

b)
$$p(z) = z^3 + 2z^2 + 2z + 1$$

d)
$$p(z) = z^6 + 1$$

Aufgabe 10 Skizzieren Sie nachstehende Teilmengen der komplexen Ebene:

a)
$$A = \{z \in \mathbb{C} : |z - 2i| \ge 3, \operatorname{Re}(z) \le 0\}$$

b)
$$B = \{z \in \mathbb{C} : |z - i| \le 2, |z - 1 - i| > 1, \operatorname{Re}(z) \le \operatorname{Im}(z)\}$$

c)
$$C = \{z \in \mathbb{C} : |(1+i)z + 1 - i| = \frac{3}{\sqrt{2}}\}$$

d)
$$D = \{z \in \mathbb{C} : |(1+i)z + 1 - i| \le 2, \operatorname{Re}(z) \le |\operatorname{Im}(z)|\}$$

Aufgabe 11 Im Folgenden soll gezeigt werden, dass die trigonometrischen Funktionen $\cos(\cdot)$ und $\sin(\cdot)$ bei komplexen Argumenten in die Hyperbelfunktionen $\cosh(\cdot)$ und $\sinh(\cdot)$ übergehen bzw. durch diese darstellbar sind.

- a) Betrachten Sie zunächst $\varphi \in \mathbb{R}$ und die Identitäten $\cos(\varphi) = \text{Re}(e^{i\varphi})$ sowie $\sin(\varphi) = \text{Im}(e^{i\varphi})$. Zeigen Sie, dass $\cos(i\varphi)$ und $\sin(i\varphi)$ durch die hyperbolischen Funktionen $\cosh(\varphi)$ und $\sinh(\varphi)$ dargestellt werden können.
- b) Nutzen Sie die Additionstheoreme für Sinus und Kosinus, um allgemeine Ausdrücke für $\sin(z)$ und $\cos(z)$ für $z \in \mathbb{C}$ zu finden. Nutzen Sie dabei Teilaufgabe a) und die Hyperbelfunktionen.
- c) Ist für $\varphi \in \mathbb{R}$ die Gleichung $\cos^2(i\varphi) + \sin^2(i\varphi) = 1$ korrekt?